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We present theoretical results on spontaneous stratification of sedimenting suspensions 
and colloids caused by a lateral temperature gradient. Fluid motion is treated 
in the Stokes approximation. and motion of suspended particles is described by 
Burgers equation with convection. The internal structure and interaction of shocks 
at convection roll boundaries is studied numerically using a reduced one-dimensional 
model based on a Galerkin approach. Qualitative comparison is made to experimental 
data. 

1. Introduction 
For over a century, it has been observed that an initially uniform suspension will de- 

velop multiple layers of varying concentrations (Brewer 1884; Mendenhall & Mason 
1923; Mason & Mendenhall 1923). This phenomenon is of potential interest for 
industrial applications and possibly geological processes as well (Siano 1979). Strat- 
ification is observed even in monodispersive (all particles the same size) suspensions 
and in colloids with specially coated particles which exclude all but hydrodynamical 
interparticle interactions (Siano 1979). The crucial factor is the presence of a lateral 
temperature gradient. 

In this paper we describe these layered structures in a monodispersive system. We 
find that each ‘shock’ is the line separating two adjacent convection rolls; this is a 
detailed description of the scenario suggested in Mendenhall & Mason (1923) and 
Mason & Mendenhall (1923). Multiple rolls and strata in a monodispersive system 
can be induced by special initial conditions with stretched gradients of particle 
concentration. We begin by analysing thermal convection in the presence of a 
lateral temperature gradient. Then this problem is combined with sedimentation of 
a monodispersive system described by Burgers equation (Barker & Grimson 1987; 
Saarloos & Huse 1990; Esipov 1995; Whitham 1974). To study the interaction of 
shocks, the resulting system is reduced to one spatial dimension using a Galerkin 
approximation which also sheds some light on the internal structure of the layer. 
These reduced equations are then solved numerically with a finite difference scheme. 
We briefly mention some convergence studies, and finally, the results are compared 
with experimental data. 
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FIGURE 1. A schematic diagram of the system. Light areas represent high concentrations of particles 
and dark areas show low concentrations. The arrows indicate convection rolls. The dashed line 
represents the velocity test function used in the Galerkin approximation (see $4). 

2. Brief description of the phenomenon 
When an initially homogeneous colloidal suspension is left to settle, multiple 

layers with different concentrations are observed. This phenomenon has been docu- 
mented in a wide range of materials and in both sedimenting and creaming particles 
(Brewer 1884; Siano 1979; Mueth et al. 1996). More recently, it has been shown 
(Mueth et al. 1996) that there is a convection cell in each layer apparently driven by 
a small horizontal temperature gradient = 0.01"C (see figure 1). This suggests that 
the interaction between convection and sedimentation is essential in forming and sta- 
bilizing the layers. Experiments in Siano (1979) were performed on monodispersive 
colloids, while Mueth et al. (1996) refers to polydispersive mixtures. To simplify 
matters we will discuss solely the creaming case, but the sedimentation case is 
analogous. 

The typical experimental scales include (Mueth et al. 1996) test tubes x 25 cm high 
and 1 - 2 cm in diameter. The beads that form the system have a radius of about 
lop4 cm. The solution generally starts out with a uniform concentration (Siano 1979; 
Mueth et al. 1996), and a small volume fraction of beads, % lop4, or with a uniform 
concentration gradient (Siano 1979) ; multiple layers take days or weeks to develop. 
Care must be taken that the temperature gradient across the tube does not get too 
large since even radiated body heat is enough to destroy the layers. 
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3. Formulation of the model 
Let us consider thermal convection of a fluid between two parallel vertical plates 

(two-dimensional geometry) separated by a distance 2d and maintained at tempera- 
tures To + A T / 2 .  In such a geometry, fluid cannot be in equilibrium; any temperature 
difference across the 'tube' will drive a convection roll. The relevant temperature gra- 
dients and convection speed, u, are assumed small, in the sense that the inequalities 
ReGl, RePrGl are satisfied. Here the Reynolds and Prandtl numbers are given by 
Re = u d / v  and Pr = v / x ,  with v and being viscosity and thermal diffusivity of the 
fluid, respectively. We assume that thermal transport is essentially independent of con- 
vection, and the lateral temperature profile is linear, given by T ( x ,  y )  = To + ATx/2d ,  
where x E [-d,d] is the horizontal coordinate and y is the vertical one. 

To study thermally induced motion we treat fluid with particles as an efiective 
medium. This description is justified at scales of order d provided that the convection 
velocity, u, greatly exceeds the velocity of creaming, uo (see below). Inside the strata 
where u is much greater than uo this description is valid. We are dealing with small 
Reynolds numbers and time scales greatly exceeding settling times of viscous flows, 
which allows us to use Stokes approximation (Landau & Lifshitz 1987). Then the 
equations of motion for an incompressible fluid in the presence of gravity 9, become 

Vp = p(vAu + 9). (3.1) 

v - u = o .  (3.2) 
We neglect the viscosity dependence on particle volume fraction, c, and temperature. 
However, in the forcing term we need to retain the c and T dependence. To leading 
order we get 

AP X 

P P 2d 
2 = VAU + -cg - -pATg .  ( 3 . 3 )  

Here Ap is the density difference between particles and the surrounding fluid, p is 
the density of fluid (with or without particles to this order), p is the coefficient of 
thermal expansion. To arrive at (3.3) one assumes that the fluid velocity field adjusts 
instantaneously to the slowly changing c-field. The velocity field u vanishes at the 
boundaries. 

In the absence of particles, c = 0, (3.3) is linear and the solution reflects only 
thermal convection 

v = -~ gBAT (x3 - .id2), u = 0, 
12vd (3.4) 

where u = (u ,  u ) .  This solution is valid far from the bottom and top of the sedimenting 
system and describes up and down motion in a single convection roll. A single roll 
becomes unstable to multiple rolls when convective heat transfer is no longer negligible 
with respect to heat conduction. This happens at GrPr x 1 where the Grashof number, 
Gr, is defined as Gr = BATgd'/v'. Here Gr x 10. Under the experimental conditions 
of interest the formation of multiple rolls requires the presence of particles. 

It is sufficient for our purposes 
to use the Burgers equation description (Burgers 1974; Barker & Grimson 1987; 
Saarloos & Huse 1990; Esipov 1995) with advection. We assume that the drift of 
particles is due to fluid convection and buoyancy hindered by particle interaction. 
The latter is described in the dilute limit by Batchelor's formula (Batchelor 1972). 
The mass conservation equation reads 

We now consider the motion of particles. 

C, + IC * VC + v o  . V( 1 -  kc)^ = DAc, (3 .5)  
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here uo = 2a2Apg/9pov is the velocity of an isolated particle of radius a when buoyancy 
is balanced by Stokes drag, k is a constant, D is the particle diffusivity. For colloids, 
D = kB T/6npova  is the Brownian diffusivity ; for suspensions, D corresponds to the 
empirical description of hydrodynamical diffusivity (Nicolai et al. 1995; Esipov 1995). 
The dependence of diffusivity on c is neglected. For colloids in which thermal motion 
keeps the local distribution of particles random, Batchelor’s work (Batchelor 1972) 
shows that k is approximately 6.55. For suspensions k is 10-20% smaller. Regularizing 
forces such as surface charge may also lead to different values of k .  The numerical 
results presented here were run with k between 2 and 7. 

When particles are present uniformly and do not move with respect to the surround- 
ing fluid (in the limit uo, D + 0) the same convection roll is established. Interesting 
behaviour begins when the initial concentration field is not uniform. When a tem- 
perature gradient is added there are two factors that contribute to the lateral density 
profile of the fluid: temperature and particle concentration. Levels of equal density 
begin to flatten out and multiple convection rolls may form. Experimentally, the 
interface between layers is observed to be tilted. We can account for this by bal- 
ancing hydrostatic pressure with the forcing due to temperature. Within the layers, 
the temperature forcing term is primarily balanced by viscous shear. However, near 
each shock, the velocity runs parallel to the interface so the two important effects 
are temperature and hydrostatic pressure, p = Apgdtan4, where Ap is the density 
difference between two adjacent layers and 4 is the tilt angle. Equating these two 
terms (pressure and forcing due to AT) in (3.3), using d as a characteristic length 
scale, and assuming 4 ~ 1 ,  we can estimate a relationship for AT and 4 :  

2AP4 
P P  

AT ‘V -. 

This also gives us an upper bound for AT. If 4 
will be destroyed. Thus AT,,, - 2AplPp. 

As suggested by Mendenhall & Mason (1923) 
gradient are necessary to produce stratification’ 
of the convection rolls by balancing these two 

(3.6) 

gets too large, 4 - 0(1), the layer 

‘both a temperature and a density 
We can estimate the initial size 

effects. We start with an initial 
positive concentration gradient in the y-direction; then there is a density difference 
in the y-direction due to concentration and in the x-direction due to temperature. 
The lateral density difference will immediately force a convection roll which will 
shift the concentration of particles. The fluid reaches a steady state when lateral 
concentration density differences exactly cancel temperature density differences. This 
is easily achieved away from the boundaries since low concentrations (more-dense 
fluid) are being pulled up on the warm side and pushed down on the cool side (see 
figure 2). However, near the top and bottom of the domain particles are being moved 
across the tube; this motion cannot create a sufficient lateral concentration gradient 
to compensate for the temperature difference. Thus we can estimate the size of the 
initial roll by matching density differences : 

(3.7) 

Here Ap is the density difference between particles and fluid, and the subscript denotes 
a derivative. The approximate size of the initial convection roll, Hroll, is given by 

Apx = PATp w Apy = Ap cyjlnlr Ay. 
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FIGURE 2. Illustration of the balancing of horizontal and vertical density differences to estimate the 
size of a convection roll. Grey shades represent regions of similar concentrations. The large arrows 
indicate how concentration is shifted by convection. 

In  the absence of fluid motion, u = 0, (3.5) reduces to the Burgers equation. I t  
has travelling wave solutions which describe the motion of the interface between the 
colloid and the supernatant (medium free from particles) (Barker & Grimson 1987; 
Saarloos & Huse 1990; Esipov 1995). Surprisingly, the Burgers form is not required 
to produce the steep concentration gradients between layers. Numerical evidence 
shows that steps in concentration form even when uo = 0. This suggests that the 
layers are formed because of the coupling between the velocity and concentration 
fields rather than from the simple steepening effects produced by Burgers equation. 

4. The Galerkin approximation (one-dimensional reduction) 
To reduce the problem to one spatial dimension we use a Galerkin-like method in 

the x-variable. We choose trial functions with explicit x-dependence inspired by (3.4) 
which we believe will approximate the real solution. Since we have restricted the form 
of the approximate solutions we cannot expect to satisfy the differential equations 
exactly, but we require that the amount by which the equations fail to hold, the 
residual, be constrained to be orthogonal to the trial functions (Strang & Fix 1973). In 
other words, multiply equations (3.3) and (3.5) in the previous section by appropriate 
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trial functions and integrate over the entire domain and equate the two sides. The 
resulting relations can be viewed as differential equations involving only one spatial 
variable, y. 

First, we need to select a functional form for the velocity in the y-direction. To 
impose the no-slip condition, we require that u is zero on the boundaries; also, to form 
the convection cells, we would like it to be positive on the warm side and negative 
on the cool side (see figure 1). We choose a polynomial in x but unconstrained in y 
and t. Based on (3.4) we take 

where the subscripts denote differentiation. To select u, we use the divergence-free 
condition, (4.1), and integration to get 

u = -6, (Y, t )  d x ) .  (4.2) 

The stream function w, is given by ~ ( x ,  y, t )  = 6(y,  t)p(x). Note 6(y, t )  is an unknown 
function that will appear in our final partial differential equations. In general the test 
functions are taken to be 5, = f(y)pL,(x) for y-components and 5" = -f,(y)p(x) for 
x-components. Here f(y)  is an arbitrary function; we will take f(y)  = 6(y) to simplify 
the integration. We substitute the velocity ansatz (4.1), (4.2) in (3.3) and integrate 
over the domain: 

Here 10 = (x,y) and pressure has been eliminated by integrating by parts (Fortin 1993). 
Before we can perform the integration, we need to choose a trial function for the 

concentration. In the spirit of (4.2), (4.1) we decompose the concentration field into 
a part with no x-dependence and a small correction which is positive on one side, 
negative on the other and has zero derivative at the walls; this final condition reflects 
the fact that there are no beads moving through the walls of the test tube. Thus 

c (x, y ,  t )  = E(y, t )  + b" (y, t) A(x), A(x) = x (x' - 3d') . (4.4) 

Combining this with (4.3), performing the integration and dropping the tildes, we 
obtain an ordinary differential equation giving u as a function of b, 

4d3 
21 

~d'u,,, - 2u,, + --u = 5 (%b - 
2d2 (4.5) 

Guided by (4.4) above, we choose two test functions for the concentration. The 
first, 6(y), will produce an equation for c,; the second, g(y) = 6(y)l(x), yields an 
equation for bt. Following the procedure for the velocity, we get two one-dimensional 
partial differential equations for concentration : 

Ct + Fy = Dcyy, (4.6) 

420 
17d2 

bt + -b + G, + AUC, = Db,,, (4.7) 

where the fluxes F and G are given by 
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Again we have rewritten the equations without the tildes. Equations (4.5)-(4.9) will 
be solved numerically. 

These equations can be made dimensionless by defining a ‘typical’ convection 
velocity U = PATgd2/v.  Then we can rescale, ud3 /U  --+ u, bd5 /a2 (vo /U)  --+ b, 
c/co ---f c, tvo/d + t and y / d  + y .  With this rescaling, all variables are 0(1) and there 
are only three parameters in the system. 

In light of the discussion of the tilt of the interface we do not expect that the 
solutions of our reduced system will have discontinuities. The transition in the one- 
dimensional equations should be of approximately the length 2d4, where 4 is given 
by (3.6). This expectation was borne out in our numerical experiments, within a 
factor of 2 or so. Because the transitions are still quite sharp we refer to them as 
shocks, even though near-shocks is what they appear to be. 

4.1. Alternative one-dimensional jormulations 
In addition to the Galerkin approach, there are several other methods we can apply 
to reduce the two-dimensional equations. Although we used the Galerkin equations 
exclusively for the numerics, we will present a few alternatives here in the hope that 
one may lend itself to a theoretical analysis of the system. 

The collocation method requires that the equations are satisfied exactly at n points, 
where n is the number of unknowns. To apply this, we found it convenient to 
eliminate the pressure term in the velocity equation by taking a curl of it to get 

BAT AP 
d P 

vv’ (V.  - u,.) + -g + -gc, = 0. (4.10) 

We now substitute the same forms for u,v,c given by (4.2), (4.1), (4.4) as were used in 
the Galerkin derivation into (4.10) and (3.5). This gives a velocity and a concentration 
equation with explicit x-dependence : 

gb = 0, (4.1 1) v [6u + 2u,, (3x’ - d 2 )  + p(x)u,,,,] + -g + 3- P A T  A P P x ( X )  
d P X  

( C  + bA)t - M b u , .  - D (6bx + cJY + Ah,.,.) 
4x 

+ [( 1 - 2~ - 2bz) 00 + u/L~(x)]  (C + Ih), = 0. (4.12) 

Since we have one velocity variable and two concentrations, we will pick one point 
for (4.11) and two points for (4.12). The natural choice for the velocity equation is 
x = 0 which gives the same form as (4.5) with slightly different coefficients. For the 
concentration equation, we have two options. We can pick two points where (4.12) is 
satisfied, or we can choose one point for which (4.12) and x-derivative of (4.12) are 
satisfied. In the first case, we could choose Gauss points, x = + (0.577 ...) d. The second 
option, satisfying the equation and the derivative at x = 0, produces a concentration 
equation for c, 

C* + [ O ~ C  (1 - k c ) ] ,  + :d6bu, = Dc,, , (4.13) 

and one for b which is in the same form as (4.7) with different coefficients. The c- 
equation has been written out since it has different nonlinear terms from the Galerkin 
c-equation. 

Another approach is the control volume method (Finlayson 1972). Here we start 
with (4.1 1) and (4.12); however, instead of evaluating the function at specific points, 
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we integrate over x. For the velocity equation this gives 
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This is similar to the Galerkin method since we have essentially multiplied by a 
constant test function and eliminated everything orthogonal to a constant. Since we 
need two concentration equations, we use (4.12) twice: first we integrate over x and 
second we multiply by x (or some other higher-degree polynomial) and integrate. 
Not surprisingly, the first integration yields exactly the same result as the Galerkin 
method (4.6). The second gives us slightly different coefficients for the b-equation. 
Note that this set only differs significantly from the Galerkin equations in the lack of 
a second-order term in the velocity equation. 

4.2. Linearized equations 
One can calculate approximately how fast disturbances will propagate by linearizing 
the system. In this rough estimate, we will consider u to be function of b, u = u(b),  
a reasonable simplification for moderate- and long-wavelength variations in u. Thus 
we treat c and b as our independent variables here. Also we will take D = 0 for 
simplicity. Linearizing (4.6)-(4.9) gives the system 

where the eigenvalues of the 2 x 2  matrix are the speeds of propagation. Assuming 
that u o 4 u  and b+u we can calculate the eigenvalues: 

1- f id3u.  (4.15) 

This is in order of magnitude agreement with the numerical solution of the complete 
nonlinear system. Note that disturbances propagate both up and down. 

5. Discretized model 
The Galerkin equations are solved numerically using a finite difference scheme. 

We use a variable u2 = 8;u to change the fourth-order velocity equation into two 
second-order equations. All four variables, c, b, u and 242, are knot centred. The fluxes, 
F and G, are computed at the centre of the intervals using averaged variables, e.g. 

1 ci+1/2 = 2 (ci + ci+l) 

Since the solutions will have shocks or near-shocks, we know that the computations 
are susceptible to numerical difficulties due to overshoot at the shock. Because of 
the change in the geometry from a tube to a slab and because of the simplifications 
made, we should expect only qualitative agreement with experiments. 

The overshoot at the interfaces can be controlled by increasing D .  To reduce D to a 
physical value, most computations were run with local diffusion where the diffusivity 
was chosen based on an up-winding scheme. Given a system 

where c = ( ), we can change variables to w = b-(a /P) ' /2c  and v = b+(p/a) ' /2c .  
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The resulting system 

can be discretized using standard up-winding techniques. When we convert the 
discretized system back to the original variables, we find that the up-winding adds 
an extra diffusive term of the form ( A ~ ( a p ) ' / ~ / 2 )  c,,.  This numerical diffusion is only 
needed in the vertical direction and can be restricted to the area around the shocks. 
Specifically, the vertical diffusivity (ie. the coefficient of c,,) was chosen to be 

where D is the physical diffusivity, u is the average velocity at the mesh point and 
Ay is the grid spacing. IAbl and IAcl are average jumps in b and c around the mesh 
point (so this correction term will be activated at the interfaces) and 0 is a constant 

chosen such that 0 - ( \;:!: ) = O(1) at the shocks. The averaging was done over 

the four nearest knots. 
We use an implicit scheme for the time differencing where At is controlled by a step- 

doubling process based on the first-order backward difference method. The resulting 
equations are solved simultaneously via Newton's method using 1 or 2 iterations. We 
then use extrapolation to eliminate the first-order error in At, i.e. if C (At ,k )  is the 
solution at the end of k time steps of size At/k  of the backward difference scheme, 

Cextrapolared = 2c (At,  2) - c (At3 1) 

All the computations reported here were done using a uniform spatial mesh and with 
the only up-winding given by the enhanced value of D .  

6. Computational results 
In the numerical experiments we observed both convection rolls and multiple shocks 

in concentration which is in agreement with physical experiments; figure 3 shows an 
example of typical numerical data. The two phenomena, shocks and convection, are 
inextricably connected, i.e. there is always a convection roll for each shock and vice 
versa. The number of shocks and their amplitude is extremely sensitive to changes in 
A T  and perturbations in the initial conditions. 

All numerical experiments shown here were run with d = 0.4 cm, H = 25 cm, 
v = 0.01 cm2 s-', and f l  = 2.2 x K-', (the values for v and p correspond to 
water), D = 5 x cm2s-', uo = 1.323 x lop6 cms-', and A T  = 0.005 K (unless 
indicated otherwise). 

6.1. Convergence studies 
Nonlinear first-order conservation laws frequently have non-unique solutions, only 
one of which is physically relevant. The solution of interest is usually the one that 
can be viewed as being the limit of solutions for which diffusion is getting smaller 
and smaller. There is always the concern that a numerical algorithm may converge 
to a solution other than the one that is physically relevant. Although we have less 
than a complete theoretical understanding of the reduced system we are solving, we 
did some tests to see how the solutions varied as D was decreased. Let N denote 
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i 
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D = I  x I0 ' 
(no local diffusion) 

0 9 / , r , ; , , - ; l z  0 8  , I  
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Velocity profile 
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Height (cm) 

FIGURE 4. A demonstration that local diffusion stabilizes the calculation without dramatically 
altering the solution. Additionally, by comparing the two cases that include local diffusion, we 
see that the numerics are resolving the diffusion and therefore we are converging to a reasonable 
solution. The case with 110 local diffusion was run with N = 2 x lo4 and the two cases with local 
diffusion were run with N = 3200. 

the number of' mesh points in the computation. To test the effects of local diffusion, 
we ran a test case with N = 2 x lo4, D = cm2s-', and no local diffusion; the 
diffusion should be resolved at this fine discretization. This was compared to the 
case with N = 3200 and D = ( + local) cm2 s-' using locally enhanced diffusion. 
Some of the results of these studies are shown in figure 4. 

Another test one normally performs is gradually refining the mesh to check con- 
vergence (figure 5). This case demonstrates that the 'glitch' at the edge of the shocks 
appears to be real, at least for our reduced system. In all four cases the bump is 
smooth and wider than the mesh spacing. This indicates that the bump is probably 
not the result of under-resolving the near-shock. This could come from the reduction 
process, or i t  may be present in the full system; we are not sure. 

6.2. Initial conditions 
We have only seen multiple shocks in our model when there is some perturbation 
superimposed on uniform initial conditions. Two variations we tried were: (i) a 
sine wave superimposed on a flat initial concentration and (ii) a uniform gradient in 
concentration. In the first case, we varied the period of the sine wave to get 2-25 
cycles per tube; the amplitude of the perturbation varied between 0.1~0 and 0.01~0. 
One interesting feature in these cases is that the number of shocks produced does 
not correspond directly with the period of the initial perturbation (see figure 6). This 
indicates that the shocks are not formed by a simple steepening of initial fluctuations 
as one would expect in a pure Burgers system. We also observe that the shocks 
usually do not merge (see below) which indicates that effective repulsion is achieved 
by the presence of convection rolls. 

The tilted initial condition was motivated by experiments done by Siano (1979) in 
which linearly varying the initial concentration lead to much more rapid formation of 
multiple shocks. An example of this initial concentration is shown in figure 3(b) as a 
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(a) Concentration 
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FIGURE 5. (a) The effects of an under-resolved spatial discretization; ( b )  demonstrates that the 
'glitch' at the edge of the shocks is real in our reduced system. k = 2. 
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0.8 
0 5 10 15 20 25 

Height (cm) Height (cm) 

FIGURE 6. Plots showing that the number of cycles in the initial perturbation does not correspond 
with the number of shocks formed. This suggests that the shocks are not formed by a steepening of 
initial perturbations as one would expect in a pure Burgers system. Both final conditions are shown 
at t = lo6 s. N = 3200. 

dotted line. We found that there is a limited range of initial slopes in which multiple 
shocks are formed. This is predicted by the calculation of Hroii in 43: if c ~ ( , , ~ ~  is too 
small, Hroll becomes larger than the length of the tube. 

We also observed that the rolls form by 'peeling off' the ends of the tube; i.e. 
the initial rolls form at the top and bottom of the tube and spread until a new roll 
forms at the leading edges. This is illustrated by the 'waterfall' time series in figure 7 
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which shows a succession of snapshots of the velocity profile; a small displacement 
of the graph of u is added to each successive output. The peaks in these graphs are 
locations where u gets very close to zero, i.e. these are the interfaces between rolls. 
The ‘Evolution’ figure shows the behaviour over 1.5 x lo6 s, about 17 days, while the 
‘Formation’ figure shows the first third of that. 

6.3. Comparison with experiments 
Qualitatively the simulations correspond very well with experimental data. Both 
multiple shocks and multiple convection rolls are observed numerically using exper- 
imental parameters (see figure 3). Siano (1979) shows that an initial concentration 
gradient will give rise to evenly spaced shocks which form relatively quickly (=hours); 
these shocks move at approximately the creaming velocity and slowly spread apart. 
This is also observed in the numerics as shown in figure 8. 

As mentioned in 42, the experiments are extremely sensitive to changes in AT.  
When one views the tubes for an extended period of time, the layers are destroyed 
by radiated body heat. Then when the observer leaves, the layers are reformed in 
approximately the same position. This is also seen numerically where the ‘observer’ is 
simulated by increasing the temperature on one side of the tube for a few minutes. In 
this case we see that the layers are not completely destroyed but are ‘smeared out’ so 
that the interfaces are no longer easily visible. Thus when the shocks are reforming 
there is already an initial perturbation that causes them to reappear in their original 
configuration. 

Apart for the differences in geometry a quantitative comparison is much more 
problematic due to difficulties in both the numerics and the experiments. Experimen- 
tally, one runs into trouble because the temperature gradient is small; without special 
equipment it is rather difficult to measure a temperature difference = 0.01 K and 
maintain it during the weeks that the experiment is run. Numerically a quantitative 
comparison may be difficult because of the assumptions made in the reduced model. 
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FIGURE 8. Evenly spaced shocks are produced which rise at approximately the creaming velocity. 
The solid line represents UO. We also see from the average velocity of each interface (shown by the 
dotted lines) that they are slowly spreading apart. Different symbols represent different shocks from 
one simulation. 
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First, we have assumed a two-dimensional system and neglected the geometry of 
the test tube. This could be corrected by choosing appropriate basis functions for 
a cylindrical tube and applying the same techniques described in 94. Additionally, 
we would expect the time scales in the numerics to differ from experimental values 
since we have only included the slowest decaying mode, b, in our expansion for 
concentration. 

7. Concluding remarks 
We have presented a model of sedimenting/creaming colloids which provides a 

possible explanation of the formation of multiple layers or shocks. Our model 
produces the experimentally observed structures. These structures appear to be 
formed due to a balance between creaming and convection driven by temperature 
differences and buoyancy. We have also shown that the physics can be reasonably 
represented using a one-dimensional approximation which allows us to study the 
evolution of shocks and sheds some light on the internal structure of the layers. Some 
of the techniques outlined above should be applicable to other multi-dimensional 
systems that display primarily one-dimensional characteristics, i.e. systems that 
develop structure in one spatial dimension but show little variation in the others. 
The numerical simulations not only produce the experimentally observed layers, but 
also qualitatively mirror the time evolution of the shocks. Both convection cells 
and multiple shocks are formed which then slowly spread and rise at the velocity of 
sedimentation or creaming. 

However, more work needs to be done before we can obtain a quantitative com- 
parison with experimental data. The width of the layers is highly sensitive to changes 
in AT and perturbations in the initial conditions; more experimental measurements 
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are necessary before these comparisons can be made. Additionally, we would like to 
understand the equations analytically. 

We are also interested in combining the present study with the effect of polydis- 
persity (Esipov 1995) which may provide a description of the evolution of the size 
distribution function inside the rolls. 

One can view some of the results of the simulations reported here by visiting the 
URL http://www.cs.uchicago.edu/”hosoi. 
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